This tool provides an efficient implementation of the continuous bag-of-words and skip-gram architectures for computing vector representations of words. These representations can be subsequently used in many natural language processing applications and for further research.

The word2vec tool takes a text corpus as input and produces the word vectors as output. It first constructs a vocabulary from the training text data and then learns vector representation of words. The resulting word vector file can be used as features in many natural language processing and machine learning applications.

There are two main learning algorithms in word2vec : continuous bag-of-words and continuous skip-gram. The switch -cbow allows the user to pick one of these learning algorithms. Both algorithms learn the representation of a word that is useful for prediction of other words in the sentence. These algorithms are described in detail.


Leave a Reply

Social media & sharing icons powered by UltimatelySocial